

LFR15XL4(1500 VDC) Series

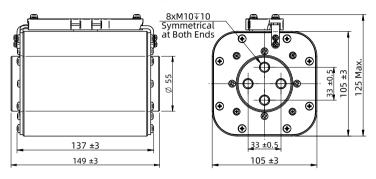
Key Features

Rated Voltage: 1500 VDCBreaking Capacity: 150 kA

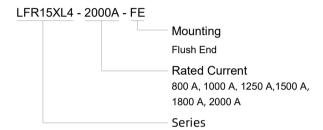
Fusing Characteristics: High Speed Fuse

Utilization Category: aR & aBat

Good Current Limiting Capability


Body Size: 149 x 105 x 125 mm (4#)

RoHS and REACH Compliant, Pb Free


Indicator Optional

Microswitch Optional (LFM25-1)

Dimensions (mm)

Part Numbering System

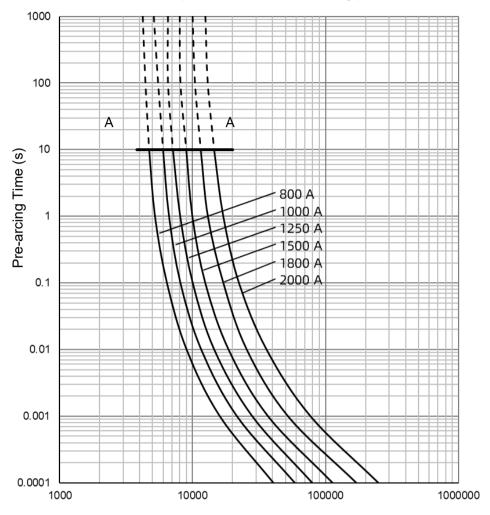
Applications

- Solar Inverter System
- Energy Storage System (ESS) Converters

Agency Information

Rated Current In (A)	Agency Symbol	Standards	The File No. and certification No. obtained by SETsafe SETfuse	Utilization Category
800 ~ 2000	(W)	GB/T 13539.4	Pending	aR
800 ~ 2000	A	EN IEC 60269-7	Pending	aBat

Specifications

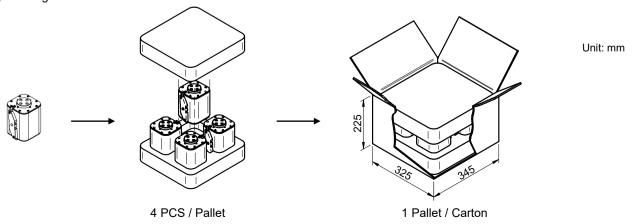

Model	Rated Current	Rated Voltage U _n	Breaking Capacity ^a	(3)	A	RoHS REACH
	(A)	(VDC)	(kA)	CCC	TUV	Pb Free
LFR15XL4-800A-FE	800	1500	150	0	0	•
LFR15XL4-1000A-FE	1000	1500	150	0	0	•
LFR15XL4-1250A-FE	1250	1500	150	0	0	•
LFR15XL4-1500A-FE	1500	1500	150	0	0	•
LFR15XL4-1800A-FE	1800	1500	150	0	0	•
LFR15XL4-2000A-FE	2000	1500	150	0	0	•

Note: 1. a: Third party test report. "○": Certification pending. "●": RoHS and REACH Compliant, Pb Free.

^{2.} Recommended Installation Method: M10 Bolts, Recommended Installation Torque 24 $\ensuremath{\text{N}}\xspace \cdot \ensuremath{\text{m}}\xspace$

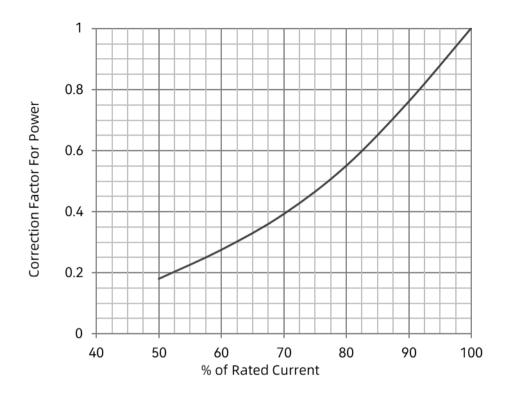
LFR15XL4(1500 VDC) Series

Time-Current Characteristics (For Reference Only)

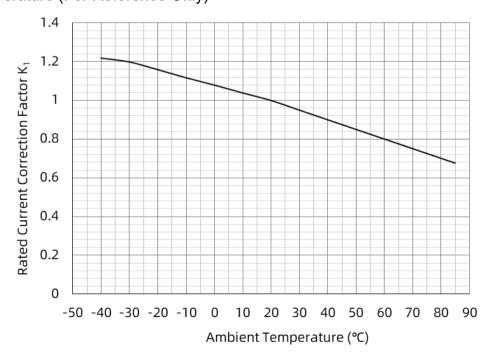


Prospective Current (A)

Packaging

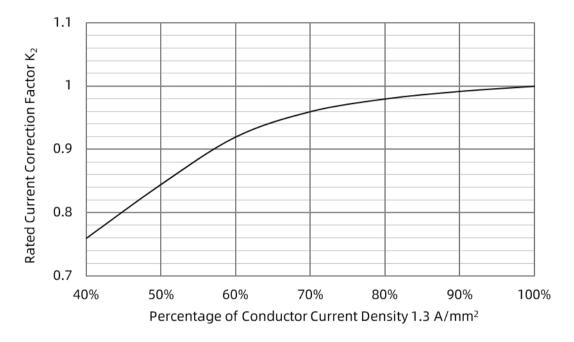

Item	Pearl Cotton Pallet	Carton
Product Quantity (PCS)	4	4
Weight	4.4×(1±10%) kg/PCS	18.4×(1±10%) kg/Carton

Packaging Drawing:

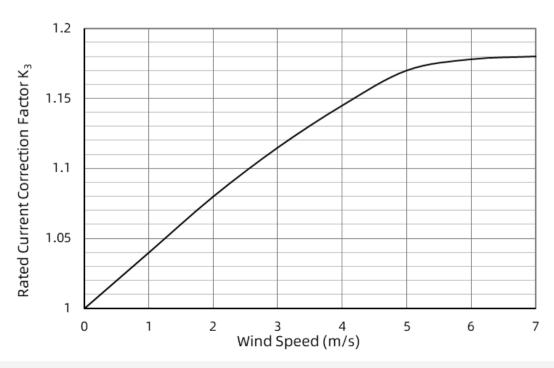


Power Dissipation Curve (For Reference Only)

Rated Current Derating Curve


Ambient Temperature (For Reference Only)

LFR15XL4(1500 VDC) Series


Connecting Conductor (For Reference Only)

The current density of copper bar for fuse installation is suggested to be 1.3 A/mm². If the carrying current density of copper bar is greater than 1.3 A/mm², it is recommended to reduce the rated current of fuse appropriately.

Cooling Air (For Reference Only)

When the fuse operates in the environment with cooling air, the rated current value of the fuse needs to be corrected.

LFR15XL4(1500 VDC) Series

Altitude (For Reference Only)

Altitude (m)	Derating Factor K ₄
2000	1.000
2500	0.975
3000	0.950
3500	0.925
4000	0.900
4500	0.875
5000	0.850

Rated Current:

$$I_n \geq \frac{K_0 I_C}{K_1 K_2 K_3 K_4 K_5}$$

 $I_{\rm c}$ — Long-term continuous operating current

K₀ — Reliability factor: 1.25 (Reference DLT 5044-2014)

K₁ — Ambient temperature correction factor

K₂ — Correction factor for connecting conductors

K₃ — Cooling air correction factor

K₄ — Altitude correction factor

 K_5 — Closed environment correction factor, for the better heat dissipation conditions of the box to take 0.9 ~ 0.95, while for the poorer take 0.8

LFR15XL4(1500 VDC) Series

Replacement

The fuse is a non-resettable product, for safety reasons, lease ensure that the spare fuse is same model.

Installation Position

Do not install the fuse on an assembly that may often subject to severe continuous vibration or with corrosive gases (NH₃, SO₂, Cl₂ etc.).

Transportation

During packaging and transportation, rain and snow and mechanical damage shall be avoided.

Storage Conditions and Effective Date

- Storage temperature: 10 ° C~30 ° C.
- Storage humidity: 30%~70%.
- Sealed in a place with no sunshine no pollution and without corrosive gases(NH₃,SO₂,Cl₂, etc.).
- Validity period: 12 consecutive months after you receive it.

LFR15XL4(1500 VDC) Series

Glossary

Item	Description	
Fuse	Device that by the fusing of one or more of its specially designed and proportioned components open which it is inserted by breaking the current when this exceeds a given value for a sufficient time.	es the circuit in —(IEC 60269-1)
Rated Current of a fuse-link	Value of current that fuse-link can carry continuously without deterioration under specified conditions.	—(IEC 60269-1)
Prospective Current (of a circuit and with respect to a fuse)	Current that would flow in the circuit if each pole of the fuse were replaced by conductor of negligible	impedance. —(IEC 60269-1)
Rated Voltage <i>U</i> _n	A maximum open circuit voltage in which a fuse can be used, yet safely interrupt an overcurrent. Exc voltage rating of a fuse impairs its ability to clear an overload or short circuit safely.	eeding the —(IEC 60269-1)
Ampere Squared Seconds I ² t	The melting, arcing, or clearing integral of a fuse, termed l^2t , is the thermal energy required to melt, a specific current. It can be expressed as melting l^2t , arcing l^2t or the sum of them, clearing l^2t .	rc, or clear a —(IEC 60269-1)
Time-current Charac- teristics	Current giving the time, e.g. pre-arcing time or operating time as a function of the prospective current conditions of operation.	under stated —(IEC 60269-1)
Breaking Capacity	Value of prospective current that a fuse is capable of breaking at a stated voltage under prescribed of and behavior.	onditions of use —(IEC 60269-1)
Breaking Range	Breaking range is a range of prospective currents within which the breaking capacity of a fuse-link is	assured. —(IEC 60269-1)
Pre-arcing Time / Melting Time	Interval of time between the beginning of a current large enough to cause a break in the fuse-elemen stant when an arc is initiated.	t(s) and the in- —(IEC 60269-1)
Arcing Time	Interval of time between the instant of the initiation of the arc in a fuse and the instant of final arc extinution.	nction in that —(IEC 60269-1)
Operating Time / Total Clearing Time	Sum of the pre-arcing time and the acting time.	—(IEC 60269-1)
Power Dissipation (in a fuse-link)	Power released in a fuse-link carrying a stated value of electric current under prescribed conditions o ior.	f use and behav- —(IEC 60269-1)
Correction Factor of Rated Current	When the application environment and working conditions exceed in the conditions specified in the st purpose of matching the working current and long service life of the fuse, the rating of fuse should be correction factor. Consult the fuse manufacturer for specific application recommendations.	
Cut-off Current	Maximum instantaneous value reached by the current during the breaking operation of a fuse-link wh such a manner as to prevent the current from reaching the otherwise attainable maximum.	en it operates in —(IEC 60269-1)
Cut-off Current Characteristic/ Let-through Current Characteristic	Curve giving the cut-off current as a function of the prospective current under stated conditions of ope	eration. —(IEC 60269-1)